「人工智能技术的发展」人工智能技术的发展对社会的进步具有重要意义
人工智能技术的发展
人工智能技术的发展对社会的进步具有重要意义
人工智能的发展前景如何?人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。本文核心数据:全球人工智能行业市场规模情况,欧洲人工智能市场投资情况,美国人工智能市场投资情况,欧洲人工智能市场投资情况,日本人工智能市场投资情况,全球人工智能行业整体发展趋势1、 人工智能行业规模巨大当今,全球科技界最炙手可热的名词莫过于“人工智能”,全球科技巨头诸如谷歌、微软、苹果、IBM、Facebook、英特尔等都将人工智能视为下一个技术引爆点,纷纷砸入巨额投资展开研发与竞争。谷歌把人工智能作为未来重大战略,全力开发“谷歌大脑”;Facebook斥巨资成立人工智能实验室;微软推出旨在探索人类大脑奥秘的人工智能系统“Adam”(亚当),直接与“谷歌大脑”抗衡。近年来,深度学习+大数据+并行计算共同推动人工智能技术实现跨越式发展。“人工智能+”应用已开始落地开花,从智能安防,到智能客服,再到智慧教育和智慧医疗等。基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。得益于深度学习等AI技术的进步,以及Al在各个行业的深入应用,产业发展迅速。根据沙利文的统计预测,2019年全球人工智能行业的市场规模约为1917亿美元,初步估计2020年全球人工智能规模将达到2335亿元。2、欧美国家投资规模波动上涨,日本相较欧美差距较大欧洲人工智能处于领先地位,近年来,欧洲为推动人工智能的发展,欧盟制定了覆盖整个欧盟的人工智能推进政策、研究和投资计划,协同推进战略实施,确保在人工智能领域的全球竞争力。从2014-2020年的投资数量和投资金额来看,欧洲人工智能行业的投资规模呈上升的趋势,但近几年行业投资热度有所下降,相对而言保持稳定。2020年,欧洲人工智能相关投资事件为40起,投资金额达到39.72亿元。美国在脑科学、量子计算、通用AI等方面超前布局,同时,充分依托硅谷强大优势,由企业主导建立了完整的人工智能产业链和生态圈,在人工智能芯片、开源框架平台、操作系统等基础软硬件领域全球领先。从2014-2020年的投资数量和投资金额来看,美国人工智能行业的投资规模不断扩大。虽然2019-2020年投资事件有所减少,但投资金额却不断增加,单笔平均投资金额持续上升。2020年,美国人工智能相关投资事件为101起,投资金额达到429.23亿元。日本的人工智能研究,首先是从大学校园里开始的。有日本机器人之父之称的早稻田大学教授加藤一郎,早在1970年代就开始研发人工肌肉驱动之下的下肢机器人。1990年代又研发出以液压和电机驱动的下肢机器人。而大阪大学智能机器人学教授石黑浩带领的研究小组,在2010年就开发出了可以模仿人类表情的女性替身机器人。在战略上,日本政府将人工智能定位为增长战略的支柱。日本人工智能市场的投资规模远不如美国、欧洲和中国等国家和地区,其中日本人工智能企业数量较少也是其中影响因素。3、全球人工智能将呈现螺旋式发展未来全球的人工智能将呈现螺旋式发展,同时在人工智能应用快速普及的情况下,场景将呈现出快速整张的趋势。细分赛道中,机器学习、图像识别、智能机器人最具有发展潜力。以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
市场规模近年来,中国人工智能产业发展迅速,语音识别和计算机视觉成为国内人工智能市场最成熟的两个领域。自2015年开始,中国人工智能产业规模逐年上升,据中国信通院数据,2015年到2018年复合平均增长率为54.6%,高于全球平均水平(约36%)。2018年,我国人工智能产业市场规模已达到415.5亿元。随着人工智能专用芯片的突破、人工智能应用范围的不断扩大,以及众多人工智能创业公司的诞生和成长,2019年我国人工智能产业规模持续增长,2019年市场规模达到554亿元。发展规划分析国家政策层面看——《新一代人工智能发展规划》提出,到2020年初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。在国家层面政策的不断推动下,我国各省市也相继出台了适合本地发展环境的人工智能“十三五”相关规划,据前瞻对制定了具体产业规模发展目标省市的整理,中国12个省市2020年的规模目标达到4290亿,远远超过国家层面制定的1500亿的目标。另进一步研读各省市的政策,可知现阶段国家较为注重人工智能领域四个领域的建设——基础层看,注重芯片等硬件研发、技术层则注重智能计算平台的搭建、智能感知处理、智能交互中心的建设,而应用层则注重人工智能创新发展试验区建设。——更多数据来源及分析请参考于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
人工智能的发展前景还是很好的。 人工智能即AI(Artificial Intelligence),应用非常非常之广泛,功能十分十分之强大(应用举例:谷歌研究开发的阿尔法狗(AlphaGO)下围棋战胜人类就是一个典型的人工智能应用):人工智能(AI)广泛应用在智能制造(工业4.0),工业互联网,物联网,智联网,无人自动驾驶,无人超市等各种领域。因此人工智能在各种领域大量应用对人工智能就业的方向及发展产生深刻的影响,对上下中游的产业链产生深刻变化。给人工智能就业方向与发展前景提供了广阔的岗位及专业空间:具体主要表现在:1.人工智能应用在智能制造(工业4.0);工业互联网,物联网,智联网,无人自动驾驶,无人超市等领域需要用到广泛大量类别功能多样的智能芯片,所以在智能芯片研发设计制造领域的产业链需要大量的芯片研发设计,芯片材料研究,制造封测相关岗位,需要大量的设计开发制造工程师。 2.人工智能应用的智能制造(工业4.0--无人车间)需要大量的智能设备设计开发,程式设定,设备维修等应用技术型工程师人才,从而产生大量相应的工作岗位。
人工智能的发展迎来了转折点:如今国家开始大力发展人工智能行业,人工智能行业在的海量的数据,更高的计算能力、深度学习模型的建立等因素的推动下,使得人工智能算法领域有了重大突破。人工智能未来发展的前景是,将分析深度学习应用于可用数据,改善决策的过程,产生更高度的智能,从而获得更便捷的服务,全方面改善我们的生活,不断提高我们对世界的认知。 当下,人工智能已经在社会中广泛应用,企业对人工智能人才的需求不断增高,所以当下时间参加人工智能教育是一个不错的选择。就像当年计算机互联网出来的时候,第一批投身到这个事业当中的人,基本都收获到了成功。而如今的人工智能也是一样,只要你抓住机遇,就能成功。不要在犹豫了,机会总是给有准备的人的。 相信在未来十年,我们将见证人工智能产业融入到更多的产业当中。虽然人工智能技术尚未成熟,但是它的便利早已开始改变我们的生活。它无已渗透到日常生活的方方面面,改善了各个领域。我们正在拓展人工智能技术的开发边界,使其更好地服务于人类。在未来,我们所接触的每一个行业都将融入一定的人工智能技术,使得越来越多人力工作被人工智能所取代,解放出大量的劳动力,让人类可以更好的进行创新。
人工智能的就业前景是非常不错的。现在的科技日新月异,人工智能领域需要大量的专业的人才。而且当前时代属于人工智能时代,各种家电产品都充斥着人工智能的技术。人工智能以计算机技术为基础,主要从事科研技术类工作。

人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。本文核心数据:全球人工智能行业市场规模情况,欧洲人工智能市场投资情况,美国人工智能市场投资情况,欧洲人工智能市场投资情况,日本人工智能市场投资情况,全球人工智能行业整体发展趋势1、 人工智能行业规模巨大当今,全球科技界最炙手可热的名词莫过于“人工智能”,全球科技巨头诸如谷歌、微软、苹果、IBM、Facebook、英特尔等都将人工智能视为下一个技术引爆点,纷纷砸入巨额投资展开研发与竞争。谷歌把人工智能作为未来重大战略,全力开发“谷歌大脑”;Facebook斥巨资成立人工智能实验室;微软推出旨在探索人类大脑奥秘的人工智能系统“Adam”(亚当),直接与“谷歌大脑”抗衡。近年来,深度学习+大数据+并行计算共同推动人工智能技术实现跨越式发展。“人工智能+”应用已开始落地开花,从智能安防,到智能客服,再到智慧教育和智慧医疗等。基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。得益于深度学习等AI技术的进步,以及Al在各个行业的深入应用,产业发展迅速。根据沙利文的统计预测,2019年全球人工智能行业的市场规模约为1917亿美元,初步估计2020年全球人工智能规模将达到2335亿元。2、欧美国家投资规模波动上涨,日本相较欧美差距较大欧洲人工智能处于领先地位,近年来,欧洲为推动人工智能的发展,欧盟制定了覆盖整个欧盟的人工智能推进政策、研究和投资计划,协同推进战略实施,确保在人工智能领域的全球竞争力。从2014-2020年的投资数量和投资金额来看,欧洲人工智能行业的投资规模呈上升的趋势,但近几年行业投资热度有所下降,相对而言保持稳定。2020年,欧洲人工智能相关投资事件为40起,投资金额达到39.72亿元。美国在脑科学、量子计算、通用AI等方面超前布局,同时,充分依托硅谷强大优势,由企业主导建立了完整的人工智能产业链和生态圈,在人工智能芯片、开源框架平台、操作系统等基础软硬件领域全球领先。从2014-2020年的投资数量和投资金额来看,美国人工智能行业的投资规模不断扩大。虽然2019-2020年投资事件有所减少,但投资金额却不断增加,单笔平均投资金额持续上升。2020年,美国人工智能相关投资事件为101起,投资金额达到429.23亿元。日本的人工智能研究,首先是从大学校园里开始的。有日本机器人之父之称的早稻田大学教授加藤一郎,早在1970年代就开始研发人工肌肉驱动之下的下肢机器人。1990年代又研发出以液压和电机驱动的下肢机器人。而大阪大学智能机器人学教授石黑浩带领的研究小组,在2010年就开发出了可以模仿人类表情的女性替身机器人。在战略上,日本政府将人工智能定位为增长战略的支柱。日本人工智能市场的投资规模远不如美国、欧洲和中国等国家和地区,其中日本人工智能企业数量较少也是其中影响因素。3、全球人工智能将呈现螺旋式发展未来全球的人工智能将呈现螺旋式发展,同时在人工智能应用快速普及的情况下,场景将呈现出快速整张的趋势。细分赛道中,机器学习、图像识别、智能机器人最具有发展潜力。以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
市场规模近年来,中国人工智能产业发展迅速,语音识别和计算机视觉成为国内人工智能市场最成熟的两个领域。自2015年开始,中国人工智能产业规模逐年上升,据中国信通院数据,2015年到2018年复合平均增长率为54.6%,高于全球平均水平(约36%)。2018年,我国人工智能产业市场规模已达到415.5亿元。随着人工智能专用芯片的突破、人工智能应用范围的不断扩大,以及众多人工智能创业公司的诞生和成长,2019年我国人工智能产业规模持续增长,2019年市场规模达到554亿元。发展规划分析国家政策层面看——《新一代人工智能发展规划》提出,到2020年初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。在国家层面政策的不断推动下,我国各省市也相继出台了适合本地发展环境的人工智能“十三五”相关规划,据前瞻对制定了具体产业规模发展目标省市的整理,中国12个省市2020年的规模目标达到4290亿,远远超过国家层面制定的1500亿的目标。另进一步研读各省市的政策,可知现阶段国家较为注重人工智能领域四个领域的建设——基础层看,注重芯片等硬件研发、技术层则注重智能计算平台的搭建、智能感知处理、智能交互中心的建设,而应用层则注重人工智能创新发展试验区建设。——更多数据来源及分析请参考于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
人工智能的发展前景还是很好的。 人工智能即AI(Artificial Intelligence),应用非常非常之广泛,功能十分十分之强大(应用举例:谷歌研究开发的阿尔法狗(AlphaGO)下围棋战胜人类就是一个典型的人工智能应用):人工智能(AI)广泛应用在智能制造(工业4.0),工业互联网,物联网,智联网,无人自动驾驶,无人超市等各种领域。因此人工智能在各种领域大量应用对人工智能就业的方向及发展产生深刻的影响,对上下中游的产业链产生深刻变化。给人工智能就业方向与发展前景提供了广阔的岗位及专业空间:具体主要表现在:1.人工智能应用在智能制造(工业4.0);工业互联网,物联网,智联网,无人自动驾驶,无人超市等领域需要用到广泛大量类别功能多样的智能芯片,所以在智能芯片研发设计制造领域的产业链需要大量的芯片研发设计,芯片材料研究,制造封测相关岗位,需要大量的设计开发制造工程师。 2.人工智能应用的智能制造(工业4.0--无人车间)需要大量的智能设备设计开发,程式设定,设备维修等应用技术型工程师人才,从而产生大量相应的工作岗位。
人工智能的发展迎来了转折点:如今国家开始大力发展人工智能行业,人工智能行业在的海量的数据,更高的计算能力、深度学习模型的建立等因素的推动下,使得人工智能算法领域有了重大突破。人工智能未来发展的前景是,将分析深度学习应用于可用数据,改善决策的过程,产生更高度的智能,从而获得更便捷的服务,全方面改善我们的生活,不断提高我们对世界的认知。 当下,人工智能已经在社会中广泛应用,企业对人工智能人才的需求不断增高,所以当下时间参加人工智能教育是一个不错的选择。就像当年计算机互联网出来的时候,第一批投身到这个事业当中的人,基本都收获到了成功。而如今的人工智能也是一样,只要你抓住机遇,就能成功。不要在犹豫了,机会总是给有准备的人的。 相信在未来十年,我们将见证人工智能产业融入到更多的产业当中。虽然人工智能技术尚未成熟,但是它的便利早已开始改变我们的生活。它无已渗透到日常生活的方方面面,改善了各个领域。我们正在拓展人工智能技术的开发边界,使其更好地服务于人类。在未来,我们所接触的每一个行业都将融入一定的人工智能技术,使得越来越多人力工作被人工智能所取代,解放出大量的劳动力,让人类可以更好的进行创新。
人工智能的就业前景是非常不错的。现在的科技日新月异,人工智能领域需要大量的专业的人才。而且当前时代属于人工智能时代,各种家电产品都充斥着人工智能的技术。人工智能以计算机技术为基础,主要从事科研技术类工作。
市场规模近年来,中国人工智能产业发展迅速,语音识别和计算机视觉成为国内人工智能市场最成熟的两个领域。自2015年开始,中国人工智能产业规模逐年上升,据中国信通院数据,2015年到2018年复合平均增长率为54.6%,高于全球平均水平(约36%)。2018年,我国人工智能产业市场规模已达到415.5亿元。随着人工智能专用芯片的突破、人工智能应用范围的不断扩大,以及众多人工智能创业公司的诞生和成长,2019年我国人工智能产业规模持续增长,2019年市场规模达到554亿元。发展规划分析国家政策层面看——《新一代人工智能发展规划》提出,到2020年初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。在国家层面政策的不断推动下,我国各省市也相继出台了适合本地发展环境的人工智能“十三五”相关规划,据前瞻对制定了具体产业规模发展目标省市的整理,中国12个省市2020年的规模目标达到4290亿,远远超过国家层面制定的1500亿的目标。另进一步研读各省市的政策,可知现阶段国家较为注重人工智能领域四个领域的建设——基础层看,注重芯片等硬件研发、技术层则注重智能计算平台的搭建、智能感知处理、智能交互中心的建设,而应用层则注重人工智能创新发展试验区建设。——更多数据来源及分析请参考于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
人工智能的发展前景还是很好的。 人工智能即AI(Artificial Intelligence),应用非常非常之广泛,功能十分十分之强大(应用举例:谷歌研究开发的阿尔法狗(AlphaGO)下围棋战胜人类就是一个典型的人工智能应用):人工智能(AI)广泛应用在智能制造(工业4.0),工业互联网,物联网,智联网,无人自动驾驶,无人超市等各种领域。因此人工智能在各种领域大量应用对人工智能就业的方向及发展产生深刻的影响,对上下中游的产业链产生深刻变化。给人工智能就业方向与发展前景提供了广阔的岗位及专业空间:具体主要表现在:1.人工智能应用在智能制造(工业4.0);工业互联网,物联网,智联网,无人自动驾驶,无人超市等领域需要用到广泛大量类别功能多样的智能芯片,所以在智能芯片研发设计制造领域的产业链需要大量的芯片研发设计,芯片材料研究,制造封测相关岗位,需要大量的设计开发制造工程师。 2.人工智能应用的智能制造(工业4.0--无人车间)需要大量的智能设备设计开发,程式设定,设备维修等应用技术型工程师人才,从而产生大量相应的工作岗位。
人工智能的发展迎来了转折点:如今国家开始大力发展人工智能行业,人工智能行业在的海量的数据,更高的计算能力、深度学习模型的建立等因素的推动下,使得人工智能算法领域有了重大突破。人工智能未来发展的前景是,将分析深度学习应用于可用数据,改善决策的过程,产生更高度的智能,从而获得更便捷的服务,全方面改善我们的生活,不断提高我们对世界的认知。 当下,人工智能已经在社会中广泛应用,企业对人工智能人才的需求不断增高,所以当下时间参加人工智能教育是一个不错的选择。就像当年计算机互联网出来的时候,第一批投身到这个事业当中的人,基本都收获到了成功。而如今的人工智能也是一样,只要你抓住机遇,就能成功。不要在犹豫了,机会总是给有准备的人的。 相信在未来十年,我们将见证人工智能产业融入到更多的产业当中。虽然人工智能技术尚未成熟,但是它的便利早已开始改变我们的生活。它无已渗透到日常生活的方方面面,改善了各个领域。我们正在拓展人工智能技术的开发边界,使其更好地服务于人类。在未来,我们所接触的每一个行业都将融入一定的人工智能技术,使得越来越多人力工作被人工智能所取代,解放出大量的劳动力,让人类可以更好的进行创新。
人工智能的就业前景是非常不错的。现在的科技日新月异,人工智能领域需要大量的专业的人才。而且当前时代属于人工智能时代,各种家电产品都充斥着人工智能的技术。人工智能以计算机技术为基础,主要从事科研技术类工作。

人工智能发展的三个阶段 知识期人工智能的发展大概分为三个阶段。 第一个阶段,我们称之为计算智能,即让计算能存会算:机器开始像人类一样会计算,传递信息。例如分布式计算、神经网络。它的价值是能够帮助人类存储和快速处理海量数据,是感知和认知的基础。第二个阶段,我们称之为感知智能,即让计算机能听会看:机器开始看懂和听懂,做出判断,采取一些简单行动。例如,可以识别人脸的摄像头、可以听懂语言的音箱。它的价值是能够帮助人类高效地完成“看”和“听”相关的工作第二个阶段,我们称之为认知智能,即让计算机能理解会思考:机器开始像人类一样能理解、思考与决策。例如,完全独立驾驶的无人驾驶汽车、自主行动的机器人。它的价值是可以全面辅助或替代人类部分工作。目前人工智能仍处于初级阶段,我们仍然处于感知智能的初级阶段。 人工智能技术发展的趋势将由目前相对成熟的领域出发,在不同领域进行尝试与实践,未来可能会在非监督学习、知识推理等方向有所突破。

人工智能的发展大概分为三个阶段。 第一个阶段,我们称之为计算智能,即让计算能存会算:机器开始像人类一样会计算,传递信息。例如分布式计算、神经网络。它的价值是能够帮助人类存储和快速处理海量数据,是感知和认知的基础。第二个阶段,我们称之为感知智能,即让计算机能听会看:机器开始看懂和听懂,做出判断,采取一些简单行动。例如,可以识别人脸的摄像头、可以听懂语言的音箱。它的价值是能够帮助人类高效地完成“看”和“听”相关的工作第二个阶段,我们称之为认知智能,即让计算机能理解会思考:机器开始像人类一样能理解、思考与决策。例如,完全独立驾驶的无人驾驶汽车、自主行动的机器人。它的价值是可以全面辅助或替代人类部分工作。目前人工智能仍处于初级阶段,我们仍然处于感知智能的初级阶段。 人工智能技术发展的趋势将由目前相对成熟的领域出发,在不同领域进行尝试与实践,未来可能会在非监督学习、知识推理等方向有所突破。

人工智能的发展?工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。优点:1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。3、人工智能可以提高人类认识世界、适应世界的能力。缺点: 1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
人工智能是引领未来的战略性技术。因此,世界主要发达国家都争先恐后地把发展人工智能作为重大战略,用以提升国家竞争力、维护国家安全、重塑发展新优势。人工智能已成为经济发展的新引擎、社会发展的加速器,人工智能技术正在渗透并重构生产、分配、交换、消费等经济活动各个环节,形成从宏观到微观各领域的智能化新需求、新产品、新技术、新业态,改变人类生活方式甚至社会结构,实现社会生产力的整体跃升。
人工智能的发展前途是挺不错的,像现在工厂里面都在研究怎么用今日代替人,无人酒店,无人商店,无人银行等都是人工智能的体现。
人工智能的发展现状处于成长期,由于相关人才的数量比较少,人工智能的人才市场处于空缺,出现了供不应求的状况。加之国家发布相关政策促进人工智能的发展;一些省份也比较重视人工智能的发展
人工智能 (计算机科学的一个分支)人工智能目前发展前景比较好。 中国人工智能已经以雷霆万钧之势冲进了我们的生活。除了智能机器人,还有智能家居、无人驾驶汽车、“刷脸”支付……人工智能的爆发式发展离不开国家政策的支持。根据高盛发布的《全球人工智能产业分布》报告统计,2017年全球新兴人工智能项目中,中国占据51%。但全球人工智能人才储备,中国却只有5%左右。我国人工智能的人才缺口超过500万人。

工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。优点:1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。3、人工智能可以提高人类认识世界、适应世界的能力。缺点: 1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
人工智能是引领未来的战略性技术。因此,世界主要发达国家都争先恐后地把发展人工智能作为重大战略,用以提升国家竞争力、维护国家安全、重塑发展新优势。人工智能已成为经济发展的新引擎、社会发展的加速器,人工智能技术正在渗透并重构生产、分配、交换、消费等经济活动各个环节,形成从宏观到微观各领域的智能化新需求、新产品、新技术、新业态,改变人类生活方式甚至社会结构,实现社会生产力的整体跃升。
人工智能的发展前途是挺不错的,像现在工厂里面都在研究怎么用今日代替人,无人酒店,无人商店,无人银行等都是人工智能的体现。
人工智能的发展现状处于成长期,由于相关人才的数量比较少,人工智能的人才市场处于空缺,出现了供不应求的状况。加之国家发布相关政策促进人工智能的发展;一些省份也比较重视人工智能的发展
人工智能 (计算机科学的一个分支)人工智能目前发展前景比较好。 中国人工智能已经以雷霆万钧之势冲进了我们的生活。除了智能机器人,还有智能家居、无人驾驶汽车、“刷脸”支付……人工智能的爆发式发展离不开国家政策的支持。根据高盛发布的《全球人工智能产业分布》报告统计,2017年全球新兴人工智能项目中,中国占据51%。但全球人工智能人才储备,中国却只有5%左右。我国人工智能的人才缺口超过500万人。
人工智能是引领未来的战略性技术。因此,世界主要发达国家都争先恐后地把发展人工智能作为重大战略,用以提升国家竞争力、维护国家安全、重塑发展新优势。人工智能已成为经济发展的新引擎、社会发展的加速器,人工智能技术正在渗透并重构生产、分配、交换、消费等经济活动各个环节,形成从宏观到微观各领域的智能化新需求、新产品、新技术、新业态,改变人类生活方式甚至社会结构,实现社会生产力的整体跃升。
人工智能的发展前途是挺不错的,像现在工厂里面都在研究怎么用今日代替人,无人酒店,无人商店,无人银行等都是人工智能的体现。
人工智能的发展现状处于成长期,由于相关人才的数量比较少,人工智能的人才市场处于空缺,出现了供不应求的状况。加之国家发布相关政策促进人工智能的发展;一些省份也比较重视人工智能的发展
人工智能 (计算机科学的一个分支)人工智能目前发展前景比较好。 中国人工智能已经以雷霆万钧之势冲进了我们的生活。除了智能机器人,还有智能家居、无人驾驶汽车、“刷脸”支付……人工智能的爆发式发展离不开国家政策的支持。根据高盛发布的《全球人工智能产业分布》报告统计,2017年全球新兴人工智能项目中,中国占据51%。但全球人工智能人才储备,中国却只有5%左右。我国人工智能的人才缺口超过500万人。

人工智能未来的发展前景怎么样?人工智能是现在大环境下需求最大的行业,国家在这方面的人才缺口特别大,供不应求,人工智能发展前景很可观。 第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。人工智能专业就业指导:科学研究、工程开发、计算机方向、软件工程、应用数学、电气自动化、通信、机械制造。一方面,人工智能的研发难度较大。另一方面,人工智能的研发需要更多的研究资源,人才培养周期相对较长。由于目前人工智能产业还处于发展初期,所以学习人工智能专业要想有更好的就业出口。想了解更多有关人工智能的详情,推荐咨询达内教育。达内教育具有丰厚的师资力量,优秀的教学体系,教学质量突出,实战讲师,经验丰富,理论知识+学习思维+实战操作,打造完整学习闭环。达内教育独创TTS8.0教学系统,并设有企业双选会。达内的OMO教学模式,全新升级,线上线下交互学习,直播学,随时学,随时问,反复学,让学员学习更便捷。感兴趣的话点击此处,免费学习一下
未来人工智能的就业和发展前景都是非常值得期待的,原因有以下几点: 一是智能化是未来的重要趋势之一。1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。二是产业互联网的发展必然会带动人工智能的发展。1、互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业。2、人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。三是人工智能技术将成为职场人的必备技能之一。1、随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求。2、未来需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。四是人工智能取代人力,对全球的经济产生影响1、说到人工智能,大多数人都是比较期待的,当然也有少数人会怀着担忧的心态看到它,因为人工智能的发展,让我们看到了人工智能的高效和服从。2、在未来,当人工智能的发展进入到一个全新的领域阶段,它是不是就能够取代现在一些行业所需要的人工劳动呢?如果是的话,那么将会有大面积的失业问题出现。3、人工智能的发展,能够在短时间内对其进行量产,这样就会有很多人下岗,对全球的经济和社会来说,影响都是巨大的。 在人工智能研究的过程中,机器学习是行业研究的核心,也是人工智能目标实现的最根本途径,是当前人工智能发展的主要瓶颈。有关于机器学习问题的研究是行业研究的重点,无论是融资金额,还是公司的数量都明显超过其他研究内容。人工智能属于全世界科研发展的前沿技术,发展过程中与信息技术、计算机技术、精密制造技术、互联网技术密切相关,对各行业、各领域的发展都有一定的影响,在人工智能发展过程中要认真、深刻地研究其未来的发展方向。
人工智能未来的发展前景还是很不错的。未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。因此现在学习人工专业是非常不错的选择。
人工智能未来的发展前景很好的。 目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。 人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。
人工智能未来的发展前景很好的。 目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。 人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。

人工智能是现在大环境下需求最大的行业,国家在这方面的人才缺口特别大,供不应求,人工智能发展前景很可观。 第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。人工智能专业就业指导:科学研究、工程开发、计算机方向、软件工程、应用数学、电气自动化、通信、机械制造。一方面,人工智能的研发难度较大。另一方面,人工智能的研发需要更多的研究资源,人才培养周期相对较长。由于目前人工智能产业还处于发展初期,所以学习人工智能专业要想有更好的就业出口。想了解更多有关人工智能的详情,推荐咨询达内教育。达内教育具有丰厚的师资力量,优秀的教学体系,教学质量突出,实战讲师,经验丰富,理论知识+学习思维+实战操作,打造完整学习闭环。达内教育独创TTS8.0教学系统,并设有企业双选会。达内的OMO教学模式,全新升级,线上线下交互学习,直播学,随时学,随时问,反复学,让学员学习更便捷。感兴趣的话点击此处,免费学习一下
未来人工智能的就业和发展前景都是非常值得期待的,原因有以下几点: 一是智能化是未来的重要趋势之一。1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。二是产业互联网的发展必然会带动人工智能的发展。1、互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业。2、人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。三是人工智能技术将成为职场人的必备技能之一。1、随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求。2、未来需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。四是人工智能取代人力,对全球的经济产生影响1、说到人工智能,大多数人都是比较期待的,当然也有少数人会怀着担忧的心态看到它,因为人工智能的发展,让我们看到了人工智能的高效和服从。2、在未来,当人工智能的发展进入到一个全新的领域阶段,它是不是就能够取代现在一些行业所需要的人工劳动呢?如果是的话,那么将会有大面积的失业问题出现。3、人工智能的发展,能够在短时间内对其进行量产,这样就会有很多人下岗,对全球的经济和社会来说,影响都是巨大的。 在人工智能研究的过程中,机器学习是行业研究的核心,也是人工智能目标实现的最根本途径,是当前人工智能发展的主要瓶颈。有关于机器学习问题的研究是行业研究的重点,无论是融资金额,还是公司的数量都明显超过其他研究内容。人工智能属于全世界科研发展的前沿技术,发展过程中与信息技术、计算机技术、精密制造技术、互联网技术密切相关,对各行业、各领域的发展都有一定的影响,在人工智能发展过程中要认真、深刻地研究其未来的发展方向。
人工智能未来的发展前景还是很不错的。未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。因此现在学习人工专业是非常不错的选择。
人工智能未来的发展前景很好的。 目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。 人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。
人工智能未来的发展前景很好的。 目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。 人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。
未来人工智能的就业和发展前景都是非常值得期待的,原因有以下几点: 一是智能化是未来的重要趋势之一。1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。二是产业互联网的发展必然会带动人工智能的发展。1、互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业。2、人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。三是人工智能技术将成为职场人的必备技能之一。1、随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求。2、未来需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。四是人工智能取代人力,对全球的经济产生影响1、说到人工智能,大多数人都是比较期待的,当然也有少数人会怀着担忧的心态看到它,因为人工智能的发展,让我们看到了人工智能的高效和服从。2、在未来,当人工智能的发展进入到一个全新的领域阶段,它是不是就能够取代现在一些行业所需要的人工劳动呢?如果是的话,那么将会有大面积的失业问题出现。3、人工智能的发展,能够在短时间内对其进行量产,这样就会有很多人下岗,对全球的经济和社会来说,影响都是巨大的。 在人工智能研究的过程中,机器学习是行业研究的核心,也是人工智能目标实现的最根本途径,是当前人工智能发展的主要瓶颈。有关于机器学习问题的研究是行业研究的重点,无论是融资金额,还是公司的数量都明显超过其他研究内容。人工智能属于全世界科研发展的前沿技术,发展过程中与信息技术、计算机技术、精密制造技术、互联网技术密切相关,对各行业、各领域的发展都有一定的影响,在人工智能发展过程中要认真、深刻地研究其未来的发展方向。
人工智能未来的发展前景还是很不错的。未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。因此现在学习人工专业是非常不错的选择。
人工智能未来的发展前景很好的。 目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。 人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。
人工智能未来的发展前景很好的。 目前学习人工智能领域发展的人才逐步增长,适应了科技发展的潮流。人工智能的发展一共经历了六个发展期,随着大数据、互联网、云计算等科技的飞速发展,人工智能的发展也迎来了新高潮。人工智能技术和产业发展可以推动智慧城市的建设和发展,人工智能化正在逐步推动资源的优化配置和各企业的工作效率。人工智能从最开始的专用智能向通用智能发展,之后向人机混合智能发展,最后向自主智能系统发展推动人类进入普惠型智能社会,语音识别实现人机交互的关键技术,现在的机器人也越来越人工化。 人工智能有利也有弊,发展人工智能也要充分考虑到人工智能技术的局限性,理性健康的发展目标才能推动社会的有利可持续发展。

人工智能发展综述近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。 人工智能(Artificial Intelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力:自然语言处理(natural language processing)知识表示(knowledge representation)自动推理(automated reasoning)机器学习(machine learning)计算机视觉(computer vision)机器人学(robotics)这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(Alan Turing)在1950年还提出了一种图灵测试(Turing Test),旨在为计算机的智能性提供一个令人满意的可操作性定义。关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(Eugene Goostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。①1943-1955年人工智能的孕育期人工智能的最早工作是Warren McCulloch和Walter Pitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。②1956年人工智能的诞生1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。③1952-1969年人工智能的期望期此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。1958年,麦卡锡发表了“Program with Common Sense”的论文,文中他描述了“Advice Taker”,这个假想的程序可以被看作第一个人工智能的系统。④1966-1973人工智能发展的困难期这个时期,在人工智能发展时主要遇到了几个大的困难。第一种困难来源于大多数早期程序对其主题一无所知;第二种困难是人工智能试图求解的许多问题的难解性。第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。⑤1980年人工智能成为产业此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。⑥1986年以后1986年,神经网络回归。1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。1995年,智能Agent出现。2001年,大数据成为可用性。在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手Garry Kasparov而震惊了世界。在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名第一的柯洁。2017年1月6日,百度的人工智能机器人“小度”在最强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“最强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在最强大脑的收官之战中战胜了人类代表队的黄政与Alex。2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%。“深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。工业4.0是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。工业4.0已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业4.0”对于未来中德经济发展具有重大意义。工业4.0项目主要分为三大主题:智能工厂、智能生产、智能物流。它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。但是随着AI的发展,工业4.0的推进速度将会大大推快。人工智能可以渗透到各行各业,领域很多,例如:①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。机器学习(Machine Learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。机器学习领域的研究工作主要围绕以下三个方面进行:(1)面向任务的研究研究和分析改进一组预定任务的执行性能的学习系统。(2)认知模型研究人类学习过程并进行计算机模拟。(3)理论分析从理论上探索各种可能的学习方法和独立于应用领域的算法机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。Deep Learning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I =>S1=>S2=>…..=>Sn=> O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。Deep Learning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络;LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM;生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。[1] Russell,S.J.Norvig,P.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(2016.12重印)[2]库兹韦尔,人工智能的未来杭州:浙江人民出版社,2016.3[3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108.[4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126.[5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70.[6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264.[7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152.[8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.[9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342.[10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9.[11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18[12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015.[13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26.[14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336.[15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214.[16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112.[17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13.[18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200.[19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59.[20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942[21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210. [22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010

近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。 人工智能(Artificial Intelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力:自然语言处理(natural language processing)知识表示(knowledge representation)自动推理(automated reasoning)机器学习(machine learning)计算机视觉(computer vision)机器人学(robotics)这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(Alan Turing)在1950年还提出了一种图灵测试(Turing Test),旨在为计算机的智能性提供一个令人满意的可操作性定义。关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(Eugene Goostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。①1943-1955年人工智能的孕育期人工智能的最早工作是Warren McCulloch和Walter Pitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。②1956年人工智能的诞生1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。③1952-1969年人工智能的期望期此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。1958年,麦卡锡发表了“Program with Common Sense”的论文,文中他描述了“Advice Taker”,这个假想的程序可以被看作第一个人工智能的系统。④1966-1973人工智能发展的困难期这个时期,在人工智能发展时主要遇到了几个大的困难。第一种困难来源于大多数早期程序对其主题一无所知;第二种困难是人工智能试图求解的许多问题的难解性。第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。⑤1980年人工智能成为产业此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。⑥1986年以后1986年,神经网络回归。1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。1995年,智能Agent出现。2001年,大数据成为可用性。在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手Garry Kasparov而震惊了世界。在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名第一的柯洁。2017年1月6日,百度的人工智能机器人“小度”在最强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“最强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在最强大脑的收官之战中战胜了人类代表队的黄政与Alex。2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%。“深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。工业4.0是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。工业4.0已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业4.0”对于未来中德经济发展具有重大意义。工业4.0项目主要分为三大主题:智能工厂、智能生产、智能物流。它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。但是随着AI的发展,工业4.0的推进速度将会大大推快。人工智能可以渗透到各行各业,领域很多,例如:①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。机器学习(Machine Learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。机器学习领域的研究工作主要围绕以下三个方面进行:(1)面向任务的研究研究和分析改进一组预定任务的执行性能的学习系统。(2)认知模型研究人类学习过程并进行计算机模拟。(3)理论分析从理论上探索各种可能的学习方法和独立于应用领域的算法机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。Deep Learning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I =>S1=>S2=>…..=>Sn=> O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。Deep Learning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络;LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM;生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。[1] Russell,S.J.Norvig,P.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(2016.12重印)[2]库兹韦尔,人工智能的未来杭州:浙江人民出版社,2016.3[3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108.[4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126.[5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70.[6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264.[7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152.[8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.[9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342.[10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9.[11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18[12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015.[13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26.[14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336.[15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214.[16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112.[17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13.[18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200.[19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59.[20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942[21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210. [22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010

相关推荐
评论列表
暂无评论,快抢沙发吧~
你 发表评论:
欢迎